15 research outputs found

    Single-View Height Estimation with Conditional Diffusion Probabilistic Models

    Full text link
    Digital Surface Models (DSM) offer a wealth of height information for understanding the Earth's surface as well as monitoring the existence or change in natural and man-made structures. Classical height estimation requires multi-view geospatial imagery or LiDAR point clouds which can be expensive to acquire. Single-view height estimation using neural network based models shows promise however it can struggle with reconstructing high resolution features. The latest advancements in diffusion models for high resolution image synthesis and editing have yet to be utilized for remote sensing imagery, particularly height estimation. Our approach involves training a generative diffusion model to learn the joint distribution of optical and DSM images across both domains as a Markov chain. This is accomplished by minimizing a denoising score matching objective while being conditioned on the source image to generate realistic high resolution 3D surfaces. In this paper we experiment with conditional denoising diffusion probabilistic models (DDPM) for height estimation from a single remotely sensed image and show promising results on the Vaihingen benchmark dataset

    ZRG: A High Resolution 3D Residential Rooftop Geometry Dataset for Machine Learning

    Full text link
    In this paper we present the Zeitview Rooftop Geometry (ZRG) dataset. ZRG contains thousands of samples of high resolution orthomosaics of aerial imagery of residential rooftops with corresponding digital surface models (DSM), 3D rooftop wireframes, and multiview imagery generated point clouds for the purpose of residential rooftop geometry and scene understanding. We perform thorough benchmarks to illustrate the numerous applications unlocked by this dataset and provide baselines for the tasks of roof outline extraction, monocular height estimation, and planar roof structure extraction

    Revisiting pre-trained remote sensing model benchmarks: resizing and normalization matters

    Full text link
    Research in self-supervised learning (SSL) with natural images has progressed rapidly in recent years and is now increasingly being applied to and benchmarked with datasets containing remotely sensed imagery. A common benchmark case is to evaluate SSL pre-trained model embeddings on datasets of remotely sensed imagery with small patch sizes, e.g., 32x32 pixels, whereas standard SSL pre-training takes place with larger patch sizes, e.g., 224x224. Furthermore, pre-training methods tend to use different image normalization preprocessing steps depending on the dataset. In this paper, we show, across seven satellite and aerial imagery datasets of varying resolution, that by simply following the preprocessing steps used in pre-training (precisely, image sizing and normalization methods), one can achieve significant performance improvements when evaluating the extracted features on downstream tasks -- an important detail overlooked in previous work in this space. We show that by following these steps, ImageNet pre-training remains a competitive baseline for satellite imagery based transfer learning tasks -- for example we find that these steps give +32.28 to overall accuracy on the So2Sat random split dataset and +11.16 on the EuroSAT dataset. Finally, we report comprehensive benchmark results with a variety of simple baseline methods for each of the seven datasets, forming an initial benchmark suite for remote sensing imagery

    An Unbiased Transformer Source Code Learning with Semantic Vulnerability Graph

    Full text link
    Over the years, open-source software systems have become prey to threat actors. Even as open-source communities act quickly to patch the breach, code vulnerability screening should be an integral part of agile software development from the beginning. Unfortunately, current vulnerability screening techniques are ineffective at identifying novel vulnerabilities or providing developers with code vulnerability and classification. Furthermore, the datasets used for vulnerability learning often exhibit distribution shifts from the real-world testing distribution due to novel attack strategies deployed by adversaries and as a result, the machine learning model's performance may be hindered or biased. To address these issues, we propose a joint interpolated multitasked unbiased vulnerability classifier comprising a transformer "RoBERTa" and graph convolution neural network (GCN). We present a training process utilizing a semantic vulnerability graph (SVG) representation from source code, created by integrating edges from a sequential flow, control flow, and data flow, as well as a novel flow dubbed Poacher Flow (PF). Poacher flow edges reduce the gap between dynamic and static program analysis and handle complex long-range dependencies. Moreover, our approach reduces biases of classifiers regarding unbalanced datasets by integrating Focal Loss objective function along with SVG. Remarkably, experimental results show that our classifier outperforms state-of-the-art results on vulnerability detection with fewer false negatives and false positives. After testing our model across multiple datasets, it shows an improvement of at least 2.41% and 18.75% in the best-case scenario. Evaluations using N-day program samples demonstrate that our proposed approach achieves a 93% accuracy and was able to detect 4, zero-day vulnerabilities from popular GitHub repositories
    corecore